
LeCroy Application Brief No. LAB WM760

Filter Signals Using MATLAB
Apply MATLAB Based Filters In The DSO's Processing Path
There is a common need to filter
signals prior to analysis. Whether
the need is to equalize frequency
response or eliminate noise prior
to further processing it is very
useful to be able to apply a user
selected filter to the data. Le-
Croy's WaveMaster series os-
cilloscopes allow users to embed
any of MATLAB's library of filter
types right into the oscilloscope's
processing path. In figure 1 we
show an example of a 2-pole
Butterworth filter which has been
applied to the acquired waveform
using the MATLAB math func-
tion.

The MATLAB math function al-
lows the user to call the
MATLAB program and execute a
MATLAB script file right in the
scopes processing path. The out-
put from MATLAB is returned to
the next processing stage and op-
erations continue within the
scope. Figure 1 shows the basic
setup of the MATLAB math
function. The function accepts
one or two input signals and re-
turns a single output. Selecting
the MATLAB tab of the math
dialog box allows the user to load
an existing .m file or create a new
one in the built-in editor, as
shown in figure 2.

The .m file used in this example is
shown in figure 3. The filter type
used is a Butterworth lowpass
filter. MATLAB offers a choice
of some 7 filter types. This filter
is a relatively slow cutoff second

Figure 1 The response of a MATLAB based 2 pole Butterworth filter
(lower trace) to a swept sine input (upper trace).

Figure 2 A view of the editing window in the WaveMaster MATLAB math
function showing part of the MATLAB .m file being executed

LeCroy Application Brief No. LAB WM760
order filter. The command to cre-
ate the filter coefficients is:

[b,a]=butter(2,1e6/(Fs/2))

Where b represents the numerator
coefficients of the digital filter
and a represents the denominator
coefficients of the digital filter.
The arguments for the Butter-
worth filter are order (2 in this
case) and the cutoff frequency
(this must be normalized to Ny-
quist which is why we have di-
vided by 1/2 the sampling fre-
quency, Fs).

The filter is implemented using
the filter command:

WformOut = filter
(b,a,WformIn1);

This applies the filter coefficients
to the selected data, in this case
the input waveform (WformIn1)

The following command queries
the scope via Microsoft automa-
tion to obtain the sampling fre-
quency.

% Interfacing the scope via
automation

h=actxserver('Lecroy.wavemaster
application');

% Get Sample Frequency and
Data length
N=length(WformIn1);
HorizontalPerStep =
h.Acquisition.C1.Out.Result.Horiz
ontalPerStep;
Fs = 1/HorizontalPerStep;

In this example we implemented a
simple low pass filter using
MATLAB. You can extend this
to use any of the available
MATLAB functions or scripts.

W
be
VB

% This MATLAB script will implement a second order But-
terworth low pass filter with a cutoff frequency of 1 MHz
% and apply it to the input waveform,WformIn1
%
% Because the data coming in does not have information
% about the time between points, we get this information by
% connecting to the WaveMaster application and get the time
% between the points for Channel 1. Therefore, if you are not
% sending data with the same time between points as channel
%1, the frequency scale in the plot will be wrong.
%
% Interfacing the scope via automation

h=actxserver('Lecroy.wavemasterapplication');

% Get Sample Frequency and Data length
N=length(WformIn1);
HorizontalPerStep =
h.Acquisition.C1.Out.Result.HorizontalPerStep;
Fs = 1/HorizontalPerStep;

% Determine the filter coefficients
[b,a]=butter(2,1e6/(Fs/2))

% Apply the filter to the input waveform
WformOut = filter (b,a,WformIn1);

Figure 3 The MATLAB .m file that implements a 1 MHz , 2 pole , But-
terworth low pass filter applied to the input trace from channel 2.
aveMaster also supports em-
dded math operations based on
Scripts, Mathcad, or Excel.

